
Int. .I. Heat Mess Trmsfer. Vol. 18, pp. 1101-l 107. Pcrgamon Press 1975. Printed in Great Britain 

ISOTHERM MIGRATION METHOD IN TWO DIMENSIONS 

J. CRANK and RADHEY S. GUFTA 
Department of Mathematics, Brunel University, Uxbridge, Middx. U.K. 
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Abstract-The Isotherm Migration Method is extended to two dimensions. The equations are formulated 
and a convenient finite-difference. method of solution is described for a variety of initial and boundary 
conditions. Particular attention is devoted to Stefan problems in which phase changes occur on a 
moving interface. As an example the solidification of a square prism of fluid is solved in detail and the 

numerical results are compared with those obtained by earlier authors. 

1. NOMENCLATURE 

u, temperature; 

x, Y, cartesian coordinates; 

t, time; 
f(x, y, t), = 0, interface contour; 

a physical constant; 
direction of normal to the interface; 
normal velocity of the interface; 
rth isotherm having a temperature u, ; 
temperature step; 
time step; 
mesh sizes in x and y directions respectively; 
radius of circle; 
value of y for the ith isotherm at x = jSx 
at t = k&. 

2. INTRODUCTION 

IN THEIR most familiar forms the heat-conduction 
equation and its solutions express temperature as a 
function of the space coordinates and time. An alterna- 
tive is to regard the temperature as an independent 
variable and one of the space coordinates then becomes 
a dependent variable. Chernous’ko [l] and Dix and 
Cizek [2] have explored this idea for problems in one 
space variable, x. Instead of writing temperature 
u = u(x, t) where t is time, they propose to express x 
as a function of u and t, i.e. x = x(u, t). By some 
numerical process or otherwise we then calculate the 
positions of given temperatures at different times. 
Essentially we track the movement of isotherms and 
the name Isotherm Migration Method (IMM) is appro- 
priate. Crank and Phale [3] have used the method to 
solve the problem of the melting of a plane sheet of ice. 

In the present paper we extend the IMM to two 
space dimensions. One convenient numerical method 
of evaluating solutions of the transformed equation is 
described. Some of the advantages of the IMM are 
mentioned and also some of the difficulties. 

As an example, the method is used to study the 
problem posed by the solidification of a square prism 
of fluid initially at a constant temperature throughout. 
Numerical values are compared with some earlier 
results obtained by other methods. 

3. TRANSFORMED EQUATIONS 

The heat-conduction equation in two space dimen- 
sions x, y is usually written in non dimensional terms 

au ah azu 
z=s+p 

Y 

Since the temperature u is constant along an isotherm 
we have 

du = ($)X,tdY+ (;)X,,dl = 0 (2) 

and so 

Substituting (1) in (3) and dropping suffices we obtain 

g_ _(!$+$)(2) (4) 

and remembering that 

we find 

This equation represents y as a function of u, x and t. 
In order to illustrate a numerical method of solution 

we consider initial and boundary conditions specified 
for a square region by 

u=o, y=o, O,<x,<l, t>o, (7) 

u=l, y=l, O<x<l, t>o, (8) 

u = y2, x=0, O<y<l, t>o, (9) 

u=y, x=1, O<y<l, t>o, (10) 

u=$(x+y), O<x<l, O<y<l, t=o. (11) 

We work on a u-x grid choosing 6u and 6x such that 
ui=uo+iSu, i=l,2 ,..., N and xj=xo+jSx, j= 
1,2,. . . , M. Conditions (7) and (8) imply y = 0 for all 
points Xj on the Y,, = 0 grid line and y = 1 for all points 
X~ on the uN = 1 grid line respectively for all t > 0. On 
thex=x,=Olinewehavefort>O,y= +u)forall 
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points i(i = 1,2, , . . , N) and on the line x = X~ = 1 for 
t > 0 (10) gives y = ut for all points i(i = 1,2, . . . , N). 
Initially, when t = 0, values of y are obtained at all 
internal grid points using (ll), i.e. at the point (ui,xj) 
yii = 2ui-xj. Thus the positions of the isotherms are 
known everywhere in the square region at E = 0 and 
values of y are specified on all four boundaries of the 
u-x grid for all time t. We note that u. -I- r& is the rth 
isotherm on which the temperature is U, in the x-y 
plane. 

We now calculate the values of y on this grid at 
successive timesteps 6t. Suppose the numerical solution 
has proceeded as far as t = k&t so that values of y are 
known at this time at all points on the u-x grid. Let 
d,j represent the value of y for the ith isotherm at 
x = j&z at time k&. Then the corresponding value 
$,T’ at the next time step (k+ 1)&t can be obtained 
explicitly by the following ~nitedifference replacement 

of 6% 

Yi,:iiY!,j = _ (Yi,j,ir;l,j)$ 

withi= 1,2,..., N-i andj= 1,2,...,M-1. 
In order to evaluate &/ax2 appearing in the right 

side of (12) we interpolate (or extrapolate) linearly the 
values of u corresponding to yi,j at xi_, and also at xi+ 1. 
A typical formula for calculating u at x = Xj- 1 is 

u = Ui+ltvi,j-I-Yi,j)-“i(Yi+l,j-lcYi,j) 
. (13) 

Yi,j-l-Yi+l,j-1 

It is not the intention in this paper to proceed with 
a detailed numerical evaluation of the solution of this 
problem. Its purpose is simply to introduce the IMM 
method and to facilitate a quantitative description of 
some advantages and difficulties ot the method. 

First we observe that the transformed equation (6) 
is non-linear even for constant thermal properties 
when the original equation (1) is linear. This is relatively 
unimportant if an explicit difference scheme is used as 
in (12) but would call for the solution of a set of non- 
linear algebraic equations if an implicit difference 
replacement were introduced. On the other hand the 
method can offer appreciable advantages for problems 
involving variable heat parameters particularly when 
they are temperature dependent. The parameters need 
not be evaluated for the different set of temperatures 
calcuIated at each time step at the points of an x-y 
grid as in the traditional finite-difference solution of 
equation (1). instead the parameters are evaluated 
once and for all before the IMM starts and only for 
the constant u lines of the u-x grid. 

The example used above avoids two difficulties which 
can beset the use of the IMM. In the initial tem~rature 
and in the boundary conditions y is a single-valued 
function of I( and x; that is there is only one value of 
y for any given point on the u -x grid. If, for example, 
the condition (9) were to be replaced by 

u=o, x=0, O<y<f, t>o (14) 

then y would be multi valued at the point x = 0, u = 0 
on the u-x grid and could take any value in the range 
0 < y < 1. There would never be any values for y on 
the boundary x = 0, 0 < u < 1. It is still possible, 
however, to apply the formula (12) at points on the 
grid for which x = 6x, i.e. j = 1. The oniy term which 
involves the line j = 0 is a2u,G?x2 which at a typical 
point (i, 1) is replaced by the usual 3-point formula 
containing values of u at x = 0, 6x, 26x for which 
y = yi,i. According to (14) at x = 0, u = 0 for al1 values 
of y in the range 0 < y < 1 and hence for y = yi,i. At 
x = 6x, we insert u = Ui,t and for x = 26.x we use an 
interpolated or extrapolated value of u based on (13). 

Other boundary conditions on x = 0 can be dealt 
with by a parabolic or other extrapolation procedure 
based on the two internal isotherms nearer the bound- 
ary. An example is given in Section 5 below. 

We note that a condition on the boundary y = 0 
such as u = 0, 0 < x < 1, y = 0, presents no difficulty. 
On the u-x grid we simply insert y = 0 at each grid 
point on the line u = 0 for 0 < x < 1. 

The decision as to whether the IMM transformation 
should be applied to a2u/ay2 as above or to a2uJax2 
may be influenced by the nature of the boundary con- 
ditions along x = 0 and y = 0. If the initial condition 
(11) were to be replaced by 

u=o, O<x<l, O<y<l, t=o, (15) 

the value of y at any point on the grid line u = 0 other 
than x = 1 could be anywhere in the range 0 < y c 1 
at t = 0. No isotherms other than u = 0 exist at t = 0 
and no initial values of y are available at any internal 
point on the u---x grid. In such a situation, as in the 
corresponding one-dimensional case described by Dix 
and Cizek [2], we must generate an initial set of 
isotherms. An analytic or some alternative solution is 
needed to provide the temperature dist~bution at some 
small time to from which the IMM can proceed. It is not 
unusual to have to use some special procedure for 
starting a numerical solution, particularly if singular- 
ities exist at t = 0. Sometimes a few time steps can be 
evaluated using a finite-difference form of the original 
equation (1) on an x-y grid and then by suitable 
interpotation y values can be transferred to a u-x 
grid and the solution continued by the IMM. 

The temperature u is always a single valued function 
of x and y both initially and at any subsequent time. 
The temperature at any point can only have one value 
at a given time, We have seen however that y can be a 
multi valued function of u both at t = 0 or on the 

boundaries when t > 0. In some problems y may be 
multi-valued as the solution proceeds anywhere in the 
domain of interest. 

If the temperature on one boundary first rises and 
later falls it is possible that the same tem~rature will 
occur at two different points in the region at one time. 
Another example is provided by a square region 
initially at zero temperature and of which the bound- 
aries are subsequently maintained at a constant non- 
zero temperature. Because of the symmetry of the 
isotherms, for any given x there will be two values of y 
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at which the temperature u is the same. In the example 
discussed below in Section 5 use is made of the sym- 
metry to avoid the occurrence of double valued func- 
tions. Where symmetry does not exist, or where to 
make use of it might introduce fresh difficulties, other 
convenient methods of handling the double values of y 
need to be explored. Such methods lie outside the scope 
of the present paper. Instead we turn to another variant 
of a boundary condition for which IMM is particularly 
suitable. 

Pate1 [9] showed that (16) can be written in a more 
convenient form for our present purpose which is to 
evaluate ay/& for points on the interface f(x, y, t) = 0. 
The modified form of (16) in present nomenclature is 

4. MOVING BOUNDARIES 

In many problems of practical importance one or 
more conditions are specified on boundaries which 
move through the medium. They include problems of 
melting and freezing in which a moving interface 
separates the liquid from the solid phase. The tempera- 
ture on the interface remains constant at the melting 
temperature. The velocity of the interface is determined 
by the rate at which the heat required for the phase 
change is supplied and removed by conduction. A 
second boundary condition expresses this heat balance 
at the interface. Thus the solution of the partial differ- 
ential equation of heat flow is coupled with the un- 
known motion of the interface. These problems are 
classed as Stefan problems and different investigators 
have tried a variety of methods to obtain solutions [4]. 
Most of the attempts have confined attention to prob- 
lems in one space dimension though Allen and Severn 
[5] applied relaxation techniques to two dimensional 
problems and Poots [6] obtained approximate analytic 
solutions. More recently Lazaridis [7] formulated 
general equations for a solidification problem in three 
dimensions and obtained solutions by finite-difference 
methods. The IMM has an obvious attraction for the 
solution of Stefan problems in which the temperature 
is constant on a moving boundary. The IMM is 
essentially concerned with the tracking of isotherms 
through a medium and the phase-change boundary is 
itself an isothermal surface. Thus no special problems 
arise in calculating its motion except the necessary 
IMM transformation of the melting condition. 

The IMM has been used successfully by Crank and 
Phale [3] to solve a one-dimensional problem of the 
melting of a plane sheet of ice. Rose [8] used a similar 
transformation. 

We now formulate the condition on a melting inter- 
face in two dimensions in a form suitable for IMM. 
We denote by f(x, y, t) = 0 the liquid/solid interface at 
time t. The net rate at which heat becomes available 
at the interface is given by Ks(8us/8n) -K&u&n) 
where uL and us denote temperatures in the liquid and 
solid phases respectively, KL and KS are the corre- 
sponding heat conductivities and n is measured along 
the normal to the interface from liquid to solid. If the 
velocity of the interface is u. along the normal, n, the 
necessary rate of supply of the heat of transformation 
L is Lpu, where p is the density assumed the same 
for solid and liquid phases. To secure a heat balance 
we must have 

(16) 

where we have written &Jay = @y/au)- ‘. 
On the interface (17) replaces (6) which holds at all 

other points of the region. Lazaridis [7] uses Patel’s 
form of interface condition in three dimensions and 
comments that its usefulness lies in the fact that (17), 
for example, is quasi one-dimensional, sinze the tem- 
perature gradient is taken in one dimension only. 

5. SOLIDIFICATION OF A SQUARE PRISM OF FLUID 

As an example of the application of the IMM to a 
two-dimensional Stefan problem we consider the 
following. 

An infinitely long prism is initially filled with a fluid 
at the fusion temperature u = 1. The temperature on 
its surface is subsequently maintained constant at u = 0 
below the fusion temperature so that solidification 
proceeds from the surface inwards. Let us assume that 
the prism extends between - 1~ x < 1 and - 1~ y < 1. 

Formulated in non-dimensional terms and denoting 
temperature in the solid phase by u, we require a 
solution of the equation 

au a% a% 
z=&T+;y' (18) 

subject to the boundary conditions 

u = 0 on g(x, y) = (x2 - l)(y2 - 1) = 0, t 2 0, (19) 

with - 1 < x < 1, - 1 < y < 1 and 

u = 1 on f(x, y, t) = 0, t > 0, (20) 

wheref(x, y, t) = 0 is the liquid/solid interface at time t. 
Initially we have 

f(x, y, 0) = $7(x, Y) = 0, t = 0, (21) 

because the solidification process has not yet com- 
menced . 

In addition to (20), the second condition to be satis- 
fied on the moving interface is the appropriate form 
of (16) namely 

au 

an= 
--flu, on fk Y, r) = 0, (22) 

where n is the outward normal to f(x, y, t) = 0, u, is 
the velocity of the interface in the direction of n and 
1 is a constant depending on the thermal properties 
of the material undergoing the phase change. The con- 
dition (22) is simpler than the more general condition 
(16) because in this example the liquid phase is always 
at the uniform temperature u = 1 and so there is no 
temperature gradient in the liquid phase. 

In this example the problem is symmetrical about 
the axes. We need consider only one quadrant of the 
prism enclosed say between the sides x = 1, y = 1 and 
the axes. Furthermore, the symmetry implies a zero 
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flux of heat along the axes so that the following bound- 
ary conditions have to be satisfied 

The IMM form of (18) is equation (6) and that of (22) 
is easily seen to be 

from (17). 
The structure and properties of an isotropic medium 

in the neighbourhood of any point are the same in all 
directions through the point. Because of this symmetry 
at a point on an isothermal surface the flux vector 
of heat flow must be normal to that surface. By a 
similar appeal to symmetry it follows that every point 
on the isotherm moves in the direction of the normal 
to it. 

By making use of this property we can deduce (24) 
by a somewhat shorter argument than that of Pate1 [9]. 
Thus differentiating (20) with respect to t we get 

= -(iz+jE).(ig+j$$) (25) 

where i and j are the unit vectors in the x and y 
directions respectively. 

If P(x, y) is a point on the interface u(x, y, t) = 1, 
the first term on the right side of (25) is the gradient 
of u at P, and the second term gives the velocity of P. 
Furthermore, accepting that every point on the iso- 
therm (interface) moves along the normal to it, we 
write (25) as 

z= -(Vu).(-v,n), 

= -$(vu).(Vu) (26) 

from (22), wheren is the outward normal tof(x, y, t) = 0. 
But we have 

(if)... = -f&o>,., (27) 
and combining (26) and (27) gives 

from which we immediately regain (24). 
We evaluate a numerical solution on a U-X grid as 

in Section 3, choosing Su and 6x such that Ui = u0 + idu, 
i= 1,2,... ,N (u@=O, uiv=l) and xj=xo+jSx, 
j= 1,2,...,&f(x0 = 0, x* = 1). We calculate the values 
ofy on this grid at successive time-steps St. A convenient 
finite-difference. form of (24) is 

giving yKi explicitly for j = 1,2, . . . . 

This uses a first order, backward difference approxi- 
mation to (&#y)-’ which is convenient at the interface. 
To be consistent we have replaced (18) by 

_Lf-l,j-2,$j+4'~+I j _ ‘- (30) 

rather than by (12) though the central difference form 
would be possible. The method of treating ~2~,/~x2 
described in Section 3 is used here based on formula 

(13)‘ 
On the y-axis (6) breaks down because of the second 

of (23). Therefore we fit a parabola through (x,,yl) 
and (x2, y2) to get the value of y at x = 0, remembering 
that ay/ax = 0 on the y-axis. At the other end of the 
isotherm, i.e. away from x = 0, we fit a circle passing 
through the last two computed values of y, to give its 
value at the next grid point in the x direction. Since 
the isotherm is symmetrical about the diagonal y = x 
the equation of the circle may be written as 

(X-a)Z+(y-b)Z = bZ, (31) 

where a and b are u~now~ and the centre of the 
circle is at the point (a, a) on y = x. In order to describe 
the detailed process at this end we refer to Fig. 1 which 
shows the positions of an isotherm in the x-y plane 
at times t and t+St. 

We compute those values of y at (k+ 1)St from (30) 
for which y(x) > x+&x at time k&. If y(x) < x+6x, 
the process is shifted one step back towards the y-axis. 
Let us suppose that in Fig. 1 the values of y corre- 
sponding to x = xi, i = 0, 1, . . . , (r+ 1) are known at 
time kdt and are given by yf. It should be remembered 
that the point R(yftl) has been projected by fitting a 
circle (31) through P(J&~) and Q@). When we find 
that at time (k-t_ l)&, tie1 < x,+& we calculate $“I 
using (30) for i = 1,2,. . . , (r- 1) only and W($“) is 
then obtained by fitting the circle (31) through 
S(y:l:) and T(fi?f). By choosing y(x) > x+6x we 

kBI 
(k+l)& 

t 
Y 

;/ R 

FIG. I. Positions of an isotherm at times t and t+ 13. 



Isotherm migration method in two dimensions 

make certain that the circle fitted through the two 
neighbouring points will cut the next grid line parallel 
to the y-axis because of the symmetry about the t-00461 

diagonal y = x. 
We have chosen to take advantage of the symmetry 

in this example partly in order to reduce the number 06- 

of points at which the difference equations (29) and (30) i=oio 
have to be evaluated and partly to avoid double-valued y 
functions. Any saving in computer time is offset to f =0,20 

some extent by the interpolation and extrapolation 
procedures used on the axes and the line y = x though 
these proved very convenient in practice. No attempt 
is made in this paper to study the stability of the 
method nor to carry out a formal error analysis. These 0.20 - 

must be the subject of further investigation. 

0 0.2 0.4 0.6 0.6 I.0 

6. RESULTS AND DISCUSSION X 

In order to start the IMM we must first calculate FIG. 2. Positions of the interface at t = @05(@05)@45. The 
the nositions of some isotherms and the interface after dotted line shows the position at t = 00461 obtained from 

solidification has been taking place for a short time. 
We use the one-parameter integral method of Poots [6] 
to calculate isotherm positions at t = 0.0461. The mesh 
sizes are 6u = 6x = 0.1 and the time step 6t = OGlO1. 
The value of /I is p = 1561, the same as that used by 
Lazaridis [7] and earlier workers. Table 1 gives values 
of y on the solid/liquid interface for fixed values of x 
at various times. As there is symmetry about the 
diagonal y = x, only the values of y which are above 
the diagonal are tabulated. In cases where y(x) > x+6x 
at the grid point near the diagonal one more value of y 
corresponding to the next grid value of x is also given. 

the Poot’s one-parameter integral method. 

U.0 

08 

06 

Interface contours are plotted in one quarter of the 
prism in Fig. 2 corresponding to the values in Table 1. 04 

The positions of the various isotherms are shown in 
Fig. 3 at t = 0.495 when the computations are stopped 
because there are only two values of y left correspond- 

t 
02 

ing to the grid points in the x direction on the y 
solid-liquid interface where u = uN = 1. 

The graphs in Fig. 4 and 5 show the proportion of I l\llll I III I II I 

the solidified matter along the axes and the diagonal 
0 0.2 74 0.6 08 

respectively against time. Corresponding points ob- I- 

0 .o 

) 

tained by the numerical methods of Lazaridis [7] and 
Allen and Severn [5] are also plotted for comparison. 

FIG. 3. Positions of the isotherms having temperatures 
u = QO(01)l.O at t = 0495. 

Table 1. Values of the y coordinate on the solid-liquid interface for fixed values of x at various times. 
Solution starts from the values taken from the Poots one-parameter method at t = OG461 

x 

t 0.0 01 0.2 0.3 04 05 06 

0.05 08125 08106 0.8048 07940 07764 07476 06904 
0.10 0.6979 06965 06921 0.6836 06683 06392 05606 
015 06157 06141 0.6095 06000 05810 05201 
020 0.5473 05453 0.5394 05268 04789 
025 04865 04838 04755 04567 03894 
0.30 0.4302 04263 @4146 03654 
035 0.3766 0.3708 03534 02859 
0.40 0.3337 0.3158 02623 
O-45 0.2816 0.2585 0.1893 
0495 0.2376 0.2056 0.1097 
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FIG. 4. Graph of the solid fraction along the axes 
against time. 

FIG. 5. Graph of the solid fraction along the 
diagonal of the prism against time. 

The results obtained by the IMM agree reasonably 3. J. Crank and R. D. Phale, Melting ice by isotherm 
well with the earlier values. Some of the discrepancy migration method, Bull. .I. Inst. Maths. Applies. 9, 12-14 

may be due to the use of the Poots [6J approximate (1973). 

method to start the IMM solution. 
4. J. R. Ockenden and R. Hodgkins (editors), bound 

Boundary Problems in Heat Flow and Diffusion. Clarendon 
Press, Oxford (1974). 

._ 
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METHODE DE MIGRATION ISOTHERME A DEUX DIMENSIONS 

R&sum&-La mdthode de migration isotherme est Ctendue & deux dimensions. Les tquations une fois 
form&%, une mCthode de r&solution appropriQ bash sur un schbma de diffkrences finies est p&sent&e 
pour diverses conditions aux limites et initiales. Une attention particulidre est donnQ aux probl&mes 
de Stefan dans lefquels des changements de phase ~teffien~t sur un interface en mouvement. A titre 
d’exemple le probltme de solidification d’un priseme car& de fluide est r&olu en d&ail et les r&sultats 

numCriques sont comparts B ceux obtenues par des auteurs antbrieurs. 

ZWEIDIMENSIONALE, ISOTHERME MIGRATIONSMETHODE 

Zusammenfassung-Die isotherme Migrationsmethode wird auf zweidimensionale Fiille erweitert. Die 
hergeleiteten Gleichungen werden mit einer geeigneten finite-Differenzen-Methode fir verschiedene 
Anfangs- und Randbedingungen geelast. Besonderes Augenmerk wird dem Stefan-Problem gewidmet, 
bei dem Phasentinderungen in einer bewegten Grenzfllche auftreten. Am Beispiel eines in Quadrat- 
prismenform erstarrenden Fluids erfolgt eine ausftihrliche Beschreibung des Lasungswegs und ein 

Vergleich der Ergebnisse mit denen aus friiheren Veriiffentlichungen. 
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ABYMEPHbIfi METOn M30TEPMWIECKOfi MMrPAqMM 

AunoTaqna- MeTOA u30TepMH=xecKOfi MHrpaUmi pacnpocrpaH5ieTca Ha ABYMepHYH) 3aAa'iy. 

C@OpMyJIHpOBaHbI )'paBHeHHIlWOlDiCaHMeTOAKOHe'IHblX pa3HOCTeiiAJIR WX peUIeHHIlAARUeJIOr0 

psAaHa'IaJlbHbIXHrpaHWrHblX)'CJIOBH~. Oco6oe BHHMaHHeo6palUaeTcIIHa3aAa'Q'CTefjlaHa,KOrAa 

H3MeHeHWe +a361 II~OHCXOAHT Ha ABEDKyqefiCsI rpaHHUepa3AeJIa.B KaYecTBenpHMepanpHBOAsf~Ca 

nOApO6HOe peUIeHHe AJIJl IIpOUeCCa 3aTBepAeBaHHSl XGiAKOCTli B @OpMe KBaApaTHOti npH3MbI. 

%iCJIeHHble pe3)'JlbTaTbI CpaBHHBaIOTCSl C 6onee paHHHMH pe3yJIbTaTaMFi, nOJIyYeHHblMH ApjTWMli 

HCCJICAOBaTeJIRMW. 


